01 April 2011

Enzim

Enzim adalah biomolekul berupa protein yang berfungsi sebagai katalis (senyawa yang mempercepat proses reaksi tanpa habis bereaksi) dalam suatu reaksi kimia organik. Molekul awal yang disebut substrat akan dipercepat perubahannya menjadi molekul lain yang disebut produk. Jenis produk yang akan dihasilkan bergantung pada suatu kondisi/zat, yang disebut promoter. Semua proses biologis sel memerlukan enzim agar dapat berlangsung dengan cukup cepat dalam suatu arah lintasan metabolisme yang ditentukan oleh hormon sebagai promoter.

Enzim bekerja dengan cara bereaksi dengan molekul substrat untuk menghasilkan senyawa intermediat melalui suatu reaksi kimia organik yang membutuhkan energi aktivasi lebih rendah, sehingga percepatan reaksi kimia terjadi karena reaksi kimia dengan energi aktivasi lebih tinggi membutuhkan waktu lebih lama. Sebagai contoh:

X + C → XC (1)
Y + XC → XYC (2)
XYC → CZ (3)
CZ → C + Z (4)

Meskipun senyawa katalis dapat berubah pada reaksi awal, pada reaksi akhir molekul katalis akan kembali ke bentuk semula.

Sebagian besar enzim bekerja secara khas, yang artinya setiap jenis enzim hanya dapat bekerja pada satu macam senyawa atau reaksi kimia. Hal ini disebabkan perbedaan struktur kimia tiap enzim yang bersifat tetap. Sebagai contoh, enzim α-amilase hanya dapat digunakan pada proses perombakan pati menjadi glukosa.

Kerja enzim dipengaruhi oleh beberapa faktor, terutama adalah substrat, suhu, keasaman, kofaktor dan inhibitor. Tiap enzim memerlukan suhu dan pH (tingkat keasaman) optimum yang berbeda-beda karena enzim adalah protein, yang dapat mengalami perubahan bentuk jika suhu dan keasaman berubah. Di luar suhu atau pH yang sesuai, enzim tidak dapat bekerja secara optimal atau strukturnya akan mengalami kerusakan. Hal ini akan menyebabkan enzim kehilangan fungsinya sama sekali. Kerja enzim juga dipengaruhi oleh molekul lain. Inhibitor adalah molekul yang menurunkan aktivitas enzim, sedangkan aktivator adalah yang meningkatkan aktivitas enzim. Banyak obat dan racun adalah inihibitor enzim.

Hal-ihwal yang berkaitan dengan enzim dipelajari dalam enzimologi. Dalam dunia pendidikan tinggi, enzimologi tidak dipelajari tersendiri sebagai satu jurusan tersendiri tetapi sejumlah program studi memberikan mata kuliah ini. Enzimologi terutama dipelajari dalam kedokteran, ilmu pangan, teknologi pengolahan pangan, dan cabang-cabang ilmu pertanian.

Pada akhir tahun 1700-an dan awal tahun 1800-an, pencernaan daging oleh sekresi perut dan konversi pati menjadi gula oleh ekstrak tumbuhan dan ludah telah diketahui. Namun, mekanisme bagaimana hal ini terjadi belum diidentifikasi.

Pada abad ke-19, ketika mengkaji fermentasi gula menjadi alkohol oleh ragi, Louis Pasteur menyimpulkan bahwa fermentasi ini dikatalisasi oleh gaya dorong vital yang terdapat dalam sel ragi, disebut sebagai "ferment", dan diperkirakan hanya berfungsi dalam tubuh organisme hidup. Ia menulis bahwa "fermentasi alkoholik adalah peristiwa yang berhubungan dengan kehidupan dan organisasi sel ragi, dan bukannya kematian ataupun putrefaksi sel tersebut."

Pada tahun 1878, ahli fisiologi Jerman Wilhelm Kühne (1837–1900) pertama kali menggunakan istilah "enzyme", yang berasal dari bahasa Yunani ενζυμον yang berarti "dalam bahan pengembang" (ragi), untuk menjelaskan proses ini. Kata "enzyme" kemudian digunakan untuk merujuk pada zat mati seperti pepsin, dan kata ferment digunakan untuk merujuk pada aktivitas kimiawi yang dihasilkan oleh organisme hidup.

Pada tahun 1897, Eduard Buchner memulai kajiannya mengenai kemampuan ekstrak ragi untuk memfermentasi gula walaupun ia tidak terdapat pada sel ragi yang hidup. Pada sederet eksperimen di Universitas Berlin, ia menemukan bahwa gula difermentasi bahkan apabila sel ragi tidak terdapat pada campuran. Ia menamai enzim yang memfermentasi sukrosa sebagai "zymase" (zimase). Pada tahun 1907, ia menerima penghargaan Nobel dalam bidang kimia "atas riset biokimia dan penemuan fermentasi tanpa sel yang dilakukannya". Mengikuti praktek Buchner, enzim biasanya dinamai sesuai dengan reaksi yang dikatalisasi oleh enzim tersebut. Umumnya, untuk mendapatkan nama sebuah enzim, akhiran -ase ditambahkan pada nama substrat enzim tersebut (contohnya: laktase, merupakan enzim yang mengurai laktosa) ataupun pada jenis reaksi yang dikatalisasi (contoh: DNA polimerase yang menghasilkan polimer DNA).

Penemuan bahwa enzim dapat bekerja diluar sel hidup mendorong penelitian pada sifat-sifat biokimia enzim tersebut. Banyak peneliti awal menemukan bahwa aktivitas enzim diasosiasikan dengan protein, namun beberapa ilmuwan seperti Richard Willstätter berargumen bahwa proten hanyalah bertindak sebagai pembawa enzim dan protein sendiri tidak dapat melakukan katalisis. Namun, pada tahun 1926, James B. Sumner berhasil mengkristalisasi enzim urease dan menunjukkan bahwa ia merupakan protein murni. Kesimpulannya adalah bahwa protein murni dapat berupa enzim dan hal ini secara tuntas dibuktikan oleh Northrop dan Stanley yang meneliti enzim pencernaan pepsin (1930), tripsin, dan kimotripsin. Ketiga ilmuwan ini meraih penghargaan Nobel tahun 1946 pada bidang kimia.

Penemuan bahwa enzim dapat dikristalisasi pada akhirnya mengijinkan struktur enzim ditentukan melalui kristalografi sinar-X. Metode ini pertama kali diterapkan pada lisozim, enzim yang ditemukan pada air mata, air ludah, dan telur putih, yang mencerna lapisan pelindung beberapa bakteri. Struktur enzim ini dipecahkan oleh sekelompok ilmuwan yang diketuai oleh David Chilton Phillips dan dipublikasikan pada tahun 1965.[9] Struktur lisozim dalam resolusi tinggi ini menandai dimulainya bidang biologi struktural dan usaha untuk memahami bagaimana enzim bekerja pada tingkat atom.

Koenzim adalah kofaktor berupa molekul organik kecil yang mentranspor gugus kimia atau elektron dari satu enzim ke enzim lainnya. Contoh koenzim mencakup NADH, NADPH dan adenosina trifosfat. Gugus kimiawi yang dibawa mencakup ion hidrida (H–) yang dibawa oleh NAD atau NADP+, gugus asetil yang dibawa oleh koenzim A, formil, metenil, ataupun gugus metil yang dibawa oleh asam folat, dan gugus metil yang dibawa oleh S-adenosilmetionina. Beberapa koenzim seperti riboflavin, tiamina, dan asam folat adalah vitamin.
Oleh karena koenzim secara kimiawi berubah oleh aksi enzim, adalah dapat dikatakan koenzim merupakan substrat yang khusus, ataupun substrat sekunder. Sebagai contoh, sekitar 700 enzim diketahui menggunakan koenzim NADH.

Regenerasi serta pemeliharaan konsentrasi koenzim terjadi dalam sel. Contohnya, NADPH diregenerasi melalui lintasan pentosa fosfat, dan S-adenosilmetionina melalui metionina adenosiltransferase.
Termodinamika


Tahapan-tahapan energi pada reaksi kimia. Substrat memerlukan energi yang banyak untuk mencapai keadaan transisi, yang akan kemudian berubah menjadi produk. Enzim menstabilisasi keadaan transisi, menurunkan energi yang diperlukan untuk menjadi produk.

 Artikel utama untuk bagian ini adalah: Energi aktivasi, Kesetimbangan termodinamik, dan Kesetimbangan kimia. Sebagai katalis, enzim tidak mengubah posisi kesetimbangan reaksi kimia. Biasanya reaksi akan berjalan ke arah yang sama dengan reaksi tanpa katalis. Perbedaannya adalah, reaksi enzimatik berjalan lebih cepat. Namun, tanpa keberadaan enzim, reaksi samping yang memungkinkan dapat terjadi dan menghasilkan produk yang berbeda.

Lebih lanjut, enzim dapat menggabungkan dua atau lebih reaksi, sehingga reaksi yang difavoritkan secara termodinamik dapat digunakan untuk mendorong reaksi yang tidak difavoritkan secara termodinamik. Sebagai contoh, hidrolsis ATP sering kali menggunakan reaksi kimia lainnya untuk mendorong reaksi.
Enzim mengatalisasi reaksi maju dan balik secara seimbang. Enzim tidak mengubah kesetimbangan reaksi itu sendiri, namun hanya mempercepat reaksi saja. Sebagai contoh, karbonat anhidrase mengatalisasi reaksinya ke dua arah bergantung pada konsentrasi reaktan.

 (dalam jaringan tubuh; konsentrasi CO2 yang tinggi)
 (pada paru-paru; konsentrasi CO2 yang rendah)

Walaupun demikian, jika kesetimbangan tersebut sangat memfavoritkan satu arah reaksi, yakni reaksi yang sangat eksergonik, reaksi itu akan menjadi ireversible. Pada kondisi demikian, enzim akan hanya mengatalisasi reaksi yang diijinkan secara termodinamik.

Sejarah enzim
Pada akhir abad 17, proses degradasi makanan yang terjadi di mulut yaitu penguraian pati oleh ekstrak tumbuhan dan saliva telah diketahui. Tetapi pada abad 17 belum diketahui mekanisme degradasi pati oleh saliva atau ekstrak tumbuhan. Kemudian pada abad 19, seorang ilmuan yaitu Luis Pastour menyimpulkan aktivitas proses terjadinya fermentasi alkoholik merubah pati menjadi alkohol dikatalisis oleh komponen bahan aktif yang ada dalam sel ragi hidup. Proses katalisis yang terjadi pada saat proses prubahan pati menjadi alkohol pada zaman itu disebut dengan ferment. Kemudian Wilhelm Kuhne mengusulkan nama enzyme yang mempunyai arti in yeast diturunkan dari bahasa yunani en berarti in dan kemudian zyme berarti yeast.

Eduard Buchner dari Universitas Berlin melakukan percobaan studi kemampuan ektrak ragi yang telah dipisahkan dari sel hidup untuk memfermentasi gula. Hasil percobaan yang telah dilakukan ternyata berhasil yang kemudian disebut dengan zymase. karena penelitiannya ini, Buchner memperoleh hadiah nobel dalam ilmu kimia atas penemuan fermentasi. Pada zaman itu sekitar tahun 1907 penamaan enzim selanjutnya ditambahkan akhiran ase pada akhir nama subtract, misalnya amylase yang menghidrolisis amylase.
Enzim dapat berupa bentuk Kristal yang pertama kali diisolasi oleh Summer pada tahun 1926 adalah Urease. Kemudian berkembang nama baku enzim dengan menggunakan kode EC kemudian diikuti oleh golongan enzim hingga golongan terbawah. Misalnya EC. 3. 2. 1. 1 untuk α-amilase.

Kemudian pada tahun 1946 penghargaan nobel bidang kimia diberikan kepada 3 ilmuan yaitu Stanley dan Northrop dengan pernyataan “protein murni tersebut adalah enzyme, Sunmer dengan urease merupakan protein dan dapat dikristalkan.

Pada saat ini telah dikenal lebih dari 2000 jenis enzim yang berperan penting dalam mahluk hidup. Enzim mempunyai peranan vital untuk memecahkan permasalahan yang dihadapi manusia misalnya dengan penemuan-penemuan obat untuk terapi kanker.

Prospek kedepan teknologi enzim sangat cerah, dimana ada kecenderungan pergerakan teknologi akhir-akhir ini untuk mencari teknologi hijau dan yang ramah lingkungan. Misalnya prospek enzim-enzim Hemiselulase, lignoselulase, xylanase dan mananase untuk pembuatan pakan ternak, prebiotik, bioetanol, bleaching kertas, meubel, pupuk, industry roti dsb. Eksplorasi enzim untuk industry sangat dibutuhkan untuk meningkatkan aktivitas katalitik menggunakan biokatalis yang mempunyai aktivitas katalitik 108 kali ari aktivitas normal. Sangat luarbiasa prospek enzim dalam peningkatan kesejahteraan umat manusia.

Penggolongan (Klasifikasi) enzim 

1.            Hidrolase
Hidrolase merupakan enzim-enzim yang menguraikan suatu zat dengan pertolongan air. Hidrolase dibagi atas kelompok kecil berdasarkan substratnya yaitu :
A. Karbohidrase, yaitu enzim-enzim yang menguraikan golongan karbohidrat.
Kelompok ini masih dipecah lagi menurut karbohidrat yang diuraikannya, misal :
a. Amilase, yaitu enzim yang menguraikan amilum (suatu polisakarida) menjadi maltosa 9 suatu disakarida).

    2 (C6H10O5)n + n H2O n C12H22O11


b. Maltase, yaitu enzim yang menguraikan maltosa menjadi glukosa

    C12H22O11 + H20 2 C6H12O6


c. Sukrase, yaitu enzim yang mengubah sukrosa (gula tebu) menjadi glukosa dan fruktosa.
d. Laktase, yaitu enzim yang mengubah laktase menjadi glukosa dan galaktosa.
e. Selulase, emzim yang menguraikan selulosa ( suatu polisakarida) menjadi selobiosa ( suatu disakarida)
f. Pektinase, yaitu enzim yang menguraikan pektin menjadi asam-pektin.

B. Esterase, yaitu enzim-enzim yang memecah golongan ester.
Contoh-contohnya :
a. Lipase, yaitu enzim yang menguraikan lemak menjadi gliserol dan asam lemak.
b. Fosfatase, yaitu enzim yang menguraikan suatu ester hingga terlepas asam fosfat.

C. Proteinase atau Protease, yaitu enzim enzim yang menguraikan golongan protein.
Contoh-contohnya:
a. Peptidase, yaitu enzim yang menguraikan peptida menjadi asam amino.
b. Gelatinase, yaitu enzim yang menguraikan gelatin.
c. Renin, yaitu enzim yang menguraikan kasein dari susu.

2. Oksidase dan reduktase , yaitu enzime yang menolong dalam proses oksidasi dan reduksi.
Enzim Oksidase dibagi lagi menjadi;
a. Dehidrogenase : enzim ini memegang peranan penting dalam mengubah zat-zat organik menjadi hasil-hasil oksidasi.
b. Katalase : enzim yang menguraikan hidrogen peroksida menjadi air dan oksigen.

3. Desmolase , yaitu enzim-enzim yang memutuskan ikatan-ikatan C-C, C-N dan beberapa ikatan lainnya.
Enzim Desmolase dibagi lagi menjadi :
a. Karboksilase : yaitu enzim yang mengubah asam piruyat menjadi asetaldehida.
b. Transaminase : yaitu enzim yang memindahkan gugusan amine dari suatu asam amino ke suatu asam organik sehingga yang terakhir ini berubah menjadi suatu asam amino.

Enzim juga dapat dibedakan menjadi eksoenzim dan endoenzim berdasarkan tempat kerjanya, ditinjau dari sel yang membentuknya.Eksoenzim ialah enzim yang aktivitasnya diluar sel. Endoenzim ialah enzim yang aktivitasnya didalam sel.

Selain eksoenzim dan endoenzim, dikenal juga enzim konstitutif dan enzim induktif. Enzim konstitutif ialah enzim yang dibentuk terus-menerus oleh sel tanpa peduli apakah substratnya ada atau tidak. Enzim induktif (enzim adaptif) ialah enzim yang dibentuk karena adanya rangsangan substrat atau senyawa tertentu yang lain. Misalnya pembentukan enzim beta-galaktosida pada escherichia coli yang diinduksi oleh laktosa sebagai substratnya. Tetapi ada senyawa lain juga yang dapat menginduksi enzim tersebut walaupun tidak merupakan substarnya, yaitu melibiosa. Tanpa adanya laktosa atau melibiosa, maka enzim beta-galaktosidasa tidak disintesis, tetapi sintesisnya akan dimulai bila ditambahkan laktosa atau melibiosa.

Peranan enzim :

Peran enzim dalam metabolisme dan pemanfaatannya di bidang diagnosis dan pengobatan.
Enzim merupakan biomolekul yang mengkatalis reaksi kimia, di mana hampir semua enzim adalah protein. Pada reaksi-reaksi enzimatik, molekul yang mengawali reaksi disebut substrat, sedangkan hasilnya disebut produk. Cara kerja enzim dalam mengkatalisis reaksi kimia substansi lain tidak merubah atau merusak reaksi ini.

Peran enzim dalam metabolisme
Metabolisme merupakan sekumpulan reaksi kimia yang terjadi pada makhluk hidup untuk menjaga kelangsungan hidup. Reaksi-reaksi ini meliputi sintesis molekul besar menjadi molekul yang lebih kecil (anabolisme) dan penyusunan molekul besar dari molekul yang lebih kecil (katabolisme). Beberapa reaksi kimia tersebut antara lain respirasi, glikolisis, fotosintesis pada tumbuhan, dan protein sintesis. Dengan mengikuti ketentuan bahwa suatu reaksi kimia akan berjalan lebih cepat dengan adanya asupan energi dari luar (umumnya pemanasan), maka seyogyanya reaksi kimia yang terjadi pada di dalam tubuh manusia harus diikuti dengan pemberian panas dari luar. Sebagai contoh adalah pembentukan urea yang semestinya membutuhkan suhu ratusan derajat Celcius dengan katalisator logam, hal tersebut tidak mungkin terjadi di dalam suhu tubuh fisiologis manusia, sekitar 37° C. 

Adanya enzim yang merupakan katalisator biologis menyebabkan reaksi-reaksi tersebut berjalan dalam suhu fisiologis tubuh manusia, sebab enzim berperan dalam menurunkan energi aktivasi menjadi lebih rendah dari yang semestinya dicapai dengan pemberian panas dari luar. Kerja enzim dengan cara menurunkan energi aktivasi sama sekali tidak mengubah ΔG reaksi (selisih antara energi bebas produk dan reaktan), sehingga dengan demikian kerja enzim tidak berlawanan dengan Hukum Hess 1 mengenai kekekalan energi. Selain itu, enzim menimbulkan pengaruh yang besar pada kecepatan reaksi kimia yang berlangsung dalam organisme. Reaksi-reaksi yang berlangsung selama beberapa minggu atau bulan di bawah kondisi laboratorium normal dapat terjadi hanya dalam beberapa detik di bawah pengaruh enzim di dalam tubuh. 

 PERANAN ENZIM
Terdapat berbagai macam peranan enzim yakni :
a. Reduksi, yaitu reaksi penambahan hydrogen, electron atau pelepasan oksigen.
b. Dehidrasi yaitu pelepasan molekul uap air (H20).
c. Oksidasi yaitu reaksi pelepasan molekul hydrogen, electron atau penambahan oksigen
d. Hidrolisis yaitu reaksi penambahan H20 pada suatu molekul dan diikuti pemecahan molekul pada ikatan
    yang ditambah H20.
e. Deminase yaitu reaksi pelepasan gugus amin (NH2)
f. Dekarbolisasi yaitu reaksi pelepasan CO2 dan gugusan karbosil.
g. Fosforilasi yaitu reaksi pelepasan fosfat.

IFAT-SIFAT ASAM AMINO
1. Pada umumnya, asam amino larut dalam air dan tidak larut dalam pelarut organik non polar seperti eter, aseton dan kloroform. Sifat asam amino ini berbeda dengan asam karboksilat maupun dengan sifat amina. Asam karboksilat alifatik maupun aromatik yang terdiri dari beberapa atom karbon, umumnya kurang larut dalam air tetapi larut dalam pelarut organik. Demikian pula amina, pada umumnya tidak larut dalam air, tetapi larut dalam pelarut organik.

2. Asam amino mempunyai titik lebur yang lebih tinggi dibandingkan dengan asam karboksilat atau amina (lebih besar dari 200ºC).

3. Bersifat sebagai elektrolit. Dalam larutan kondisi netral (pH isoelektrik), asam amino dapat membentuk ion yang bermuatan positif dan juga bermuatan negative (zwitterion) atau ion amfoter. Keadaan ion ini sangat tergantung pada pH larutan. Bila ditambahkan dengan basa, maka asam amino akan terdapat dalam bentuk :
H2N – CH – COO-
R
Dan bila ditambahkan asam ke dalam larutan asam amino, maka asam amino yang terbentuk : +H3N – CH – COOH
R

KLASIFIKASI ASAM AMINO
Terdapat 2 jenis asam amino berdasarkan kemampuan tubuh dalam sintesisnya, yaitu asam amino esensial dan asam amino non esensial. Asam amino esensial adalah asam amino yang tidak dapat disintesis didalam tubuh, tetapi diperoleh dari luar misalnya melalui makanan( lisin, leusin, isoleusin, treonin, metionin, valin, fenilalanin, histidin, dan arginin). Asam amino non esensial adalah asam amino yang dapat disintesis didalam tubuh melalui perombakan senyawa lain. 

Klasifikasi asam amino dapat dilakukan berdasarkan rantai samping (gugus –R) dan sifat kelarutannya didalam air. Berdasarkan kelarutan didalam air dibagi atas asam amino hidrofobik dan hidrofilik (klasifikasi dapat dilihat pada bagian struktur asam amino). Berdasarkan rantai sampingnya dapat diklasifikasikan sebagai berikut :
- Dengan rantai samping alifatik (asam amino non polar) : Glisin, Alanin, Valin, Leusin, Isoleusin.
- Dengan rantai samping yang mengandung gugus hidroksil (OH), (asam amino polar) : Serin, Treonin, Tirosin.
- Dengan rantai samping yang mengandung atom sulfur (asam amino polar) : Sistein dan metionin.
- Dengan rantai samping yang mengandung gugus asam atau amidanya(gugus R bermuatan negative) : Asam
   aspartat, Aspargin, Asam glutamate, Glutamin.
- Dengan rantai samping yang mengandung gugus basa (gugus R bermuatan positif): Arginin, lisin, Histidin
- Yang mengandung cincin aromatic : Histidin, Fenilalanin, Tirosin, Triptofan.
- Asam imino : Prolin.

Asam Amino (protein) 2
Asam amino merupakan unit pembangun protein yang dihubungkan melalui ikatan peptida pada setiap ujungnya. Protein tersusun dari atom C, H, O, dan N, serta kadang-kadang P dan S. Dari keseluruhan asam amino yang terdapat di alam hanya 20 asam amino yang yang biasa dijumpai pada protein.

Dari struktur umumnya, asam amino mempunyai dua gugus pada tiap molekulnya, yaitu gugus amino dan gugus karboksil, yang digambarkan sebagai struktur ion dipolar. Gugus amino dan gugus karboksil pada asam amino menunjukkan sifat-sifat spesifiknya. Karena asam amino mengandung kedua gugus tersebut, senyawa ini akan memberikan reaksi kimia yang yang mencirikan gugus-gugusnya. Sebagai contoh adalah reaksi asetilasi dan esterifikasi. Asam amino juga bersifat amfoter, yaitu dapat bersifat sebagai asam dan memberikan proton kepada basa kuat, atau dapat bersifat sebagai basa dan menerima proton dari basa kuat.
Semua asam amino yang ditemukan pada protein mempunyai ciri yang sama, gugus karboksil dan amino diikat pada atom karbon yang sama. Masing-masing berbeda satu dengan yang lain pada gugus R-nya, yang bervariasi dalam struktur, ukuran, muatan listrik, dan kelarutan dalam air. Beberapa asam amino mempunyai reaksi yang spesifik yang melibatkan gugus R-nya.

Melalui reaksi hidrolisis protein telah didapatkan 20 macam asam amino yang dibagi berdasarkan gugus R-nya, berikut dijabarkan penggolongan tersebut : asam amino non-polar dengan gugus R yang hidrofobik, antara lain Alanin, Valin, Leusin, Isoleusin, Prolin, Fenilalanin, Triptofan dan Metionin. Golongan kedua yaitu asam amino polar tanpa muatan pada gugus R yang beranggotakan Lisin, Serin, Treonin, Sistein, Tirosin, Asparagin dan Glutamin. Golongan ketiga yaitu asam amino yang bermuatan positif pada gugus R dan golongan keempat yaitu asam amino yang bermuatan negatif pada gugus R. Dari ke-20 asam amino yang ada, di bagi 2 Jenis asam amino:
a.asam amino essensial yaitu asam amino yang dibutuhkan tubuh tetapi tidak dapat disintesis dalam tubuh
contoh:arginin,histidin,leusi,isoleusin,metionin,fenilalanin,threonin,triptofan,valin,lisin.

0 komentar:

Post a Comment

 

Blogroll

Selamat Datang

Memberi motivasi lebih sulit dari pada memunculkannya, dan akan lebih sulit lagi memotivasi diri sendiri dari pada memotivasi orang lain. Munculkan motivasi dalam diri selama darah masih mengalir, jantung masih berdetak. Salam manis...

|-ShiJitSuKi-| Copyright © 2009 WoodMag is Designed by Ipietoon for Free Blogger Template